Adversarial evaluation for open-domain dialogue generation
نویسندگان
چکیده
We investigate the potential of adversarial evaluation methods for open-domain dialogue generation systems, comparing the performance of a discriminative agent to that of humans on the same task. Our results show that the task is hard, both for automated models and humans, but that a discriminative agent can learn patterns that lead to above-chance performance.
منابع مشابه
Adversarial Learning for Neural Dialogue Generation
In this paper, drawing intuition from the Turing test, we propose using adversarial training for open-domain dialogue generation: the system is trained to produce sequences that are indistinguishable from human-generated dialogue utterances. We cast the task as a reinforcement learning (RL) problem where we jointly train two systems, a generative model to produce response sequences, and a discr...
متن کاملAdversarial Advantage Actor-Critic Model for Task-Completion Dialogue Policy Learning
This paper presents a new method — adversarial advantage actor-critic (Adversarial A2C), which significantly improves the efficiency of dialogue policy learning in taskcompletion dialogue systems. Inspired by generative adversarial networks (GAN), we train a discriminator to differentiate responses/actions generated by dialogue agents from responses/actions by experts. Then, we incorporate the ...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملOpen Dialogue Management for Relational Databases
We present open dialogue management and its application to relational databases. An open dialogue manager generates dialogue states, actions, and default strategies from the semantics of its application domain. We define three open dialogue management tasks. First, vocabulary selection finds the intelligible attributes in each database table. Second, focus discovery selects candidate dialogue f...
متن کاملAdversarial Evaluation of Dialogue Models
The recent application of RNN encoder-decoder models has resulted in substantial progress in fully data-driven dialogue systems, but evaluation remains a challenge. An adversarial loss could be a way to directly evaluate the extent to which generated dialogue responses sound like they came from a human. This could reduce the need for human evaluation, while more directly evaluating on a generat...
متن کامل